Abstract

In this paper, we propose the use of parallel quasi-Newton (QN) optimization techniques to improve the rate of convergence of the training process for neural networks. The parallel algorithms are developed by using the self-scaling quasi-Newton (SSQN) methods. At the beginning of each iteration, a set of parallel search directions is generated. Each of these directions is selectively chosen from a representative class of QN methods. Inexact line searches are then carried out to estimate the minimum point along each search direction. The proposed parallel algorithms are tested over a set of nine benchmark problems. Computational results show that the proposed algorithms outperform other existing methods, which are evaluated over the same set of test problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.