Abstract

Large scientific parallel applications demand large amounts of memory space. Current parallel computing platforms schedule jobs without fully knowing their memory requirements. This leads to uneven memory allocation in which some nodes are overloaded. This, in turn, leads to disk paging, which is extremely expensive in the context of scientific parallel computing. To solve this problem, we propose a new peer-to-peer solution called parallel network RAM. This approach avoids the use of disk and better utilizes available RAM resources. This approach will allow larger problems to be solved while reducing the computational, communication and synchronization overhead typically involved in parallel applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.