Abstract
We employ a multiscale approach to model the translocation of biopolymers through nanometer size pores. Our computational scheme combines microscopic Molecular Dynamics (MD) with a mesoscopic Lattice Boltzmann (LB) method for the solvent dynamics, explicitly taking into account the interactions of the molecule with the surrounding fluid. We describe an efficient parallel implementation of the method which exhibits excellent scalability on the Blue Gene platform. We investigate both dynamical and statistical aspects of the translocation process by simulating polymers of various initial configurations and lengths. For a representative molecule size, we explore the effects of important parameters that enter in the simulation, paying particular attention to the strength of the molecule-solvent coupling and of the external electric field which drives the translocation process. Finally, we explore the connection between the generic polymers modeled in the simulation and DNA, for which interesting recent experimental results are available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Multiscale Computational Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.