Abstract

A number of grammatical formalisms were introduced to define the syntax of natural languages. Among them are parallel multiple context-free grammars (pmcfg's) and lexical-functional grammars (lfg's). Pmcfg's and their subclass called multiple context-free grammars (mcfg's) are natural extensions of cfg's, and pmcfg's are known to be recognizable in polynomial time. Some subclasses of lfg's have been proposed, but they were shown to generate an NP-complete language. Finite state translation systems (fts') were introduced as a computational model of transformational grammars. In this paper, three subclasses of lfg's called nc-lfg's, dc-lfg's and fc-lfg's are introduced and the generative capacities of the above mentioned grammatical formalisms are investigated. First, we show that the generative capacity of fts' is equal to that of nc-lfg's. As relations among subclasses of those formalisms, it is shown that the generative capacities of deterministic fts', dc-lfg's, and pmcfg's are equal to each other, and the generative capacity of fc-lfg's is equal to that of mcfg's. It is also shown that at least one NP-complete language is generated by fts'. Consequently, deterministic fts', dc-lfg's and fc-lfg's can be recognized in polynomial time. However, fts' (and nc-lfg's) cannot, if P ≠ NP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.