Abstract

Recently, Epsilon-Insensitive Support Vector Regression (epsiv SVR) has been introduced to solve regression and prediction problems. However, the preprocessing of data set and the selection of parameters can become a real computational burden to developer and user. Improper parameters usually lead to prediction performance degradation. In this paper, by introducing Parallel Multidimensional Step Search (PMSS) method, standard epsiv-SVR method is extended to a systematic approach for user to finish model selection with high prediction accuracy. Experiments with both simulation data set and practical data set were performed on computing nodes in Grid environment. Experimental results were analyzed with statistical method to validate the effectiveness and accuracy of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.