Abstract
The new parallel multiclass stochastic gradient descent algorithms aim at classifying million images with very-high-dimensional signatures into thousands of classes. We extend the stochastic gradient descent (SGD) for support vector machines (SVM-SGD) in several ways to develop the new multiclass SVM-SGD for efficiently classifying large image datasets into many classes. We propose (1) a balanced training algorithm for learning binary SVM-SGD classifiers, and (2) a parallel training process of classifiers with several multi-core computers/grid. The evaluation on 1000 classes of ImageNet, ILSVRC 2010 shows that our algorithm is 270 times faster than the state-of-the-art linear classifier LIBLINEAR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.