Abstract

We study the thermodynamic properties of the three-dimensional Blume-Capel model on the simple cubic lattice by means of computer simulations. In particular, we implement a parallelized variant of the multicanonical approach and perform simulations by keeping a constant temperature and crossing the phase boundary along the crystal-field axis. We obtain numerical data for several temperatures in both the first- and second-order regime of the model. Finite-size scaling analyses provide us with transition points and the dimensional scaling behavior in the numerically demanding first-order regime, as well as a clear verification of the expected Ising universality in the respective second-order regime. Finally, we discuss the scaling behavior in the vicinity of the tricritical point.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call