Abstract

Abstract Monte Carlo simulation of electron scattering in solids has proven valuable to electron microscopists for many years. The electron trajectories, x-ray generation volumes, and scattered electron signals produced by these simulations are used in quantitative x-ray microanalysis, image interpretation, experimental design, and hypothesis testing. Unfortunately, these simulations are often computationally expensive, especially when used to simulate an image or survey a multidimensional region of parameter space. Here we present techniques for performing Monte Carlo simulations in parallel on a cluster of existing desktop computers. The simulation of multiple, independent electron trajectories in a sample and the collateral calculation of detected xray and electron signals fall into a class of computational problems termed “embarrassingly parallel”, since no information needs to be exchanged between parallel threads of execution during the calculation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.