Abstract

The problem of solving sparse Systems of Linear Algebraic Equations (SLAE) by parallel Monte Carlo numerical methods is considered. The almost optimal Monte Carlo algorithms are presented. In case when a copy of the non-zero matrix elements is sent to each processor the execution time for solving SLAE by Monte Carlo on p processors is bounded by O(nNdT/p) where N is the number of chains, T is the length of the chain in the stochastic process, which are independent of matrix size n, and d is the average number of non-zero elements in the row. Finding a component of the solution vector requires O(NdT/p) time on p processors, which is independent of the matrix size n.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.