Abstract
Herein, a cost-effective and portable microfluidic paper-based sensor is proposed for the simultaneous and rapid detection of glucose, free amino acids, and vitamin C in fruit. The device was constructed by embedding a poly(carboxybetaine acrylamide) (pCBAA)-modified cellulose paper chip within a hydrophobic acrylic plate. We successfully showcased the capabilities of a filter paper-based microfluidic sensor for the detection of fruit nutrients using three distinct colorimetric analyses. Within a single paper chip, we simultaneously detected glucose, free amino acids, and vitamin C in the vivid hues of cyan blue, purple, and Turnbull's blue, respectively, in three distinctive detection zones. Notably, we employed more stable silver nanoparticles for glucose detection, replacing the traditional peroxidase approach. The detection limits for glucose reached a low level of 0.049 mmol/L. Meanwhile, the detection limits for free amino acids and vitamin C were found to be 0.236 mmol/L and 0.125 mmol/L, respectively. The feasibility of the proposed sensor was validated in 13 different practical fruit samples using spectrophotometry. Cellulose paper utilizes capillary action to process trace fluids in tiny channels, and combined with pCBAA, which has superior hydrophilicity and anti-pollution properties, it greatly improves the sensitivity and practicality of paper-based sensors. Therefore, the paper-based colorimetric device is expected to provide technical support for the nutritional value assessment of fruits in the field of rapid detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.