Abstract

We have developed a powerful parallel genetic algorithm design tool for photonic crystal and waveguide structures. The tool employs a small-population-size genetic algorithm (microgenetic algorithm) for global optimization and a two-dimensional finite-difference time-domain method to rigorously design and optimize the performance of photonic devices. We discuss the implementation and performance of this design tool. We demonstrate its application to two photonic devices, a defect taper coupler to connect conventional waveguides and photonic crystal waveguides, and a sharp 90 degrees waveguide bend for low index contrast waveguides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call