Abstract
We present a new parallel method for verified global optimization, using a centralized mediator for the dynamic load balancing. The new approach combines the advantages of two previous models, the master slave model and the processor farm. Numerical results show the efficiency of this new method. For a large number of problems at least linear speedup is reached. The efficiency of this new method is also confirmed by a comparison with other parallel methods for verified global optimization. A theoretical study proves that using the best-first strategy to choose the next box for subdivision, no real superlinear speedup may be expected concerning the number of iterations. Moreover, the potential of parallelization of methods of verified global optimization is discussed in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.