Abstract

The abdominal intersegmental structures allow insects, such as honey bees, dragonflies, butterflies, and drosophilae, to complete diverse behavioral movements. In order to reveal how the complex abdominal movements of these insects are produced, we use the honey bee (Apis mellifera L.) as a typical insect to study the relationship between intersegmental structures and abdominal motions. Microstructure observational experiments are performed by using the stereoscope and the scanning electron microscope. We find that a parallel mechanism, composed of abdominal cuticle and muscles between the adjacent segments, produces the complex and diverse movements of the honey bee abdomen. These properties regulate multiple behavioral activities such as waggle dance and flight attitude adjustment. The experimental results demonstrate that it is the joint efforts of the muscles and membranes that connected the adjacent cuticles together. The honey bee abdomen can be waggled, expanded, contracted, and flexed with the actions of the muscles. From the view point of mechanics, a parallel mechanism is evolved from the intersegmental connection structures of the honey bee abdomen. Here, we conduct a kinematic analysis of the parallel mechanism to simulate the intersegmental abdominal motions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.