Abstract

The problem of parallel machine scheduling for minimizing the makespan is an open scheduling problem with extensive practical relevance. It has been proved to be non-deterministic polynomial hard. Considering a job’s batch size greater than one in the real manufacturing environment, this paper investigates into the parallel machine scheduling with splitting jobs. Differential evolution is employed as a solution approach due to its distinctive feature, and a new crossover method and a new mutation method are brought forward in the global search procedure, according to the job splitting constraint. A specific local search method is further designed to gain a better performance, based on the analytical result from the single product problem. Numerical experiments on the performance of the proposed hybrid DE on parallel machine scheduling problems with splitting jobs covering identical and unrelated machine kinds and a realistic problem are performed, and the results indicate that the algorithm is feasible and efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call