Abstract

Parallel machine scheduling problems concern the scheduling of njobs on mmachines to minimize some function of the job completion times. If preemption is not allowed, then most problems are not only 𝒩𝒫-hard, but also very hard from a practical point of view. In this paper, we show that strong and fast linear programming lower bounds can be computed for an important class of machine scheduling problems with additive objective functions. Characteristic of these problems is that on each machine the order of the jobs in the relevant part of the schedule is obtained through some priority rule. To that end, we formulate these parallel machine scheduling problems as a set covering problem with an exponential number of binary variables, ncovering constraints, and a single side constraint. We show that the linear programming relaxation can be solved efficiently by column generation because the pricing problem is solvable in pseudo-polynomial time. We display this approach on the problem of minimizing total weighted completion time on midentical machines. Our computational results show that the lower bound is singularly strong and that the outcome of the linear program is often integral. Moreover, they show that our branch-and-bound algorithm that uses the linear programming lower bound outperforms the previously best algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.