Abstract
This paper studies parallel algorithms for the longest increasing subsequence (LIS) problem. Let $n$ be the input size and $k$ be the LIS length of the input. Sequentially, LIS is a simple problem that can be solved using dynamic programming (DP) in $O(n\log n)$ work. However, parallelizing LIS is a long-standing challenge. We are unaware of any parallel LIS algorithm that has optimal $O(n\log n)$ work and non-trivial parallelism (i.e., $\tilde{O}(k)$ or $o(n)$ span). This paper proposes a parallel LIS algorithm that costs $O(n\log k)$ work, $\tilde{O}(k)$ span, and $O(n)$ space, and is much simpler than the previous parallel LIS algorithms. We also generalize the algorithm to a weighted version of LIS, which maximizes the weighted sum for all objects in an increasing subsequence. To achieve a better work bound for the weighted LIS algorithm, we designed parallel algorithms for the van Emde Boas (vEB) tree, which has the same structure as the sequential vEB tree, and supports work-efficient parallel batch insertion, deletion, and range queries. We also implemented our parallel LIS algorithms. Our implementation is light-weighted, efficient, and scalable. On input size $10^9$, our LIS algorithm outperforms a highly-optimized sequential algorithm (with $O(n\log k)$ cost) on inputs with $k\le 3\times 10^5$. Our algorithm is also much faster than the best existing parallel implementation by Shen et al. (2022) on all input instances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.