Abstract

We describe the rationale behind the design of key features of Titanium—an explicitly parallel dialect of Java for high-performance scientific programming—and our experiences in building applications with the language. Specifically, we address Titanium's partitioned global address space model, single program multiple data parallelism support, multi-dimensional arrays and array-index calculus, memory management, immutable classes (class-like types that are value types rather than reference types), operator overloading, and generic programming. We provide an overview of the Titanium compiler implementation, covering various parallel analyses and optimizations, Titanium runtime technology and the GASNet network communication layer. We summarize results and lessons learned from implementing the NAS parallel benchmarks, elliptic and hyperbolic solvers using adaptive mesh refinement, and several applications of the immersed boundary method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.