Abstract

Radioactive and stable isotopes have been applied for decades to elucidate metabolic pathways and quantify carbon flow in cellular systems using mass and isotope balancing approaches. Isotope-labeling experiments can be conducted as a single tracer experiment, or as parallel labeling experiments. In the latter case, several experiments are performed under identical conditions except for the choice of substrate labeling. In this review, we highlight robust approaches for probing metabolism and addressing metabolically related questions though parallel labeling experiments. In the first part, we provide a brief historical perspective on parallel labeling experiments, from the early metabolic studies when radioisotopes were predominant to present-day applications based on stable-isotopes. We also elaborate on important technical and theoretical advances that have facilitated the transition from radioisotopes to stable-isotopes. In the second part of the review, we focus on parallel labeling experiments for 13C-metabolic flux analysis (13C-MFA). Parallel experiments offer several advantages that include: tailoring experiments to resolve specific fluxes with high precision; reducing the length of labeling experiments by introducing multiple entry-points of isotopes; validating biochemical network models; and improving the performance of 13C-MFA in systems where the number of measurements is limited. We conclude by discussing some challenges facing the use of parallel labeling experiments for 13C-MFA and highlight the need to address issues related to biological variability, data integration, and rational tracer selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call