Abstract
Due to the rapid advance of general-purpose graphics processing unit (GPU), it is an active research topic to study performance improvement of non-linear optimization with parallel implementation on GPU, as attested by the much research on parallel implementation of relatively simple optimization methods, such as the conjugate gradient method. We study in this context the L-BFGS-B method, or the limited memory Broyden–Fletcher–Goldfarb–Shanno with boundaries, which is a sophisticated yet efficient optimization method widely used in computer graphics as well as general scientific computation. By analyzing and resolving the inherent dependencies of some of its search steps, we propose an efficient GPU-based parallel implementation of L-BFGS-B on the GPU. We justify our design decisions and demonstrate significant speed-up by our parallel implementation in solving the centroidal Voronoi tessellation (CVT) problem as well as some typical computing problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.