Abstract
Combining the quadratic equal-order stabilized method with the approach of local and parallel finite element computations and classical iterative methods for the discretization of the steady-state Navier–Stokes equations, three parallel iterative stabilized finite element methods based on fully overlapping domain decomposition are proposed and compared in this paper. In these methods, each processor independently computes an approximate solution in its own subdomain using a global composite mesh that is fine around its own subdomain and coarse elsewhere, making the methods be easy to implement based on existing codes and have low communication complexity. Under some (strong) uniqueness conditions, stability and convergence theory of the parallel iterative stabilized methods are derived. Numerical tests are also performed to demonstrate the stability, convergence orders and high efficiency of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.