Abstract
For the solution of sparse linear systems from circuit simulation whose coefficient matrices include a few dense rows and columns, a parallel iterative algorithm with distributed Schur complement preconditioning is presented. The parallel efficiency of the solver is increased by transforming the equation system into a problem without dense rows and columns as well as by exploitation of parallel graph partitioning methods. The costs of local, incomplete LU decompositions are decreased by fill-in reducing reordering methods of the matrix and a threshold strategy for the factorization. The efficiency of the parallel solver is demonstrated with real circuit simulation problems on PC clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.