Abstract

For the solution of sparse linear systems from circuit simulation whose coefficient matrices include a few dense rows and columns, a parallel iterative algorithm with distributed Schur complement preconditioning is presented. The parallel efficiency of the solver is increased by transforming the equation system into a problem without dense rows and columns as well as by exploitation of parallel graph partitioning methods. The costs of local, incomplete LU decompositions are decreased by fill-in reducing reordering methods of the matrix and a threshold strategy for the factorization. The efficiency of the parallel solver is demonstrated with real circuit simulation problems on PC clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.