Abstract

We discuss aspects of implementation and performance of parallel iterative solution techniques applied to low Reynolds number flows around fixed and moving rigid bodies. The incompressible Navier–Stokes equations are discretised with Taylor-Hood finite elements in combination with a semi-implicit pressure-correction method. The resulting sequence of convection–diffusion and Poisson equations are solved with preconditioned Krylov subspace methods. To achieve overall scalability we consider new auxiliary algorithms for mesh handling and assembly of the system matrices. We compute the flow around a translating plate and a rotating insect wing to establish the scaling properties of the developed solver. The largest meshes have up to 132 × 106 hexahedral finite elements leading to around 3.3 × 109 unknowns. For the scalability runs the maximum core count is around 65.5 × 103. We find that almost perfect scaling can be achieved with a suitable Krylov subspace iterative method, like conjugate gradients or GMRES, and a block Jacobi preconditioner with incomplete LU factorisation as a subdomain solver. In addition to parallel performance data, we provide new highly-resolved computations of flow around a rotating insect wing and examine its vortex structure and aerodynamic loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.