Abstract

This paper investigates iterated Multistep Runge-Kutta methods of Radau type as a class of explicit methods suitable for parallel implementation. Using the idea of van der Houwen and Sommeijer [18], the method is designed in such a way that the right-hand side evaluations can be computed in parallel. We use stepsize control and variable order based on iterated approximation of the solution. A code is developed and its performance is compared with codes based on iterated Runge-Kutta methods of Gauss type and various Dormand and Prince pairs [15]. The accuracy of some of our methods are comparable with the PIRK10 methods of van der Houwen and Sommeijer [18], but require fewer processors. In addition at very stringent tolerances these new methods are competitive with RK78 pairs in a sequential implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.