Abstract

The multiple charging phenomenon resulting from electrospray ionization of proteins, while useful for the ability to make several mass measurements on a single component, can lead to highly complex spectra when mixtures are analyzed, as each component can generate multiple ions of distinct mass-to-charge ratio. Ion/ion proton-transfer reactions can overcome this problem by reduction of all components to the +1 charge state, but this typically requires the ability to extend the mass range of the instrument well beyond that available in most commercial instruments. Furthermore, reduction of protein charge to +1 also results in a reduction in detector response. Here it is shown that application of a relatively high amplitude, low-frequency auxiliary ac signal to the end cap electrodes of a 3-D ion trap during an ion/ion reaction can slow the ion/ion reaction rates of ions over a broad m/z range, in a process termed HALF parallel ion parking. Adjustment of the frequency and amplitude of the applied voltage allows the mass range into which the initial ion signal is moved to be controlled, allowing for the simplification of multicomponent mixtures within a mass range that is more commonly available on commercial systems. In addition to decreasing spectral complexity, this is advantageous for mixtures with low-abundance components, as there is less compromise with detector response than in reduction to the +1 charge state. Preliminary evidence also suggests that the ion collision cross section may play an important role in determining which charge states are most significantly inhibited from further ion/ion reactions under a given set of ion parking conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call