Abstract

The relaxed Burnett system, recently introduced in as a hydrodynamical approximation of the Boltzmann equation, is numerically solved. Due to the stiffness of this system and the severe CFL condition for large Mach numbers, a fully implicit Runge-Kutta method has been used. In order to reduce computing time, we apply a parallel stiff ODE solver based on 4-stage Radau IIA IRK. The ODE solver is combined with suitable first order upwind and second order MUSCL relaxation schemes for the spatial derivatives. Speedup results and comparisons to DSMC and Navier-Stokes approximations are reported for a 1D shock profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.