Abstract

We present an experimental optical implementation of a parallel-in-time discrete model of quantum evolution, based on the entanglement between the quantum system and a finite dimensional quantum clock. The setup is based on a programmable spatial light modulator which entangles the polarization and transverse spatial degrees of freedom of a single photon. It enables the simulation of a qubit history state containing the whole evolution of the system, capturing its main features in a simple and configurable scheme. We experimentally determine the associated system-time entanglement, which is a measure of distinguishable quantum evolution, and also the time average of observables, which in the present realization can be obtained through one single measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.