Abstract
This paper presents the parsctst code, an efficient parallel implementation of the semiclassical transition state theory (SCTST) for reaction rate constant calculations. Parsctst is developed starting from a previously presented approach for the computation of the vibrational density of states of fully coupled anharmonic molecules ( Nguyen et al. Chem. Phys. Lett. 2010 , 499 , 915 ). The parallel implementation makes it practical to tackle reactions involving more than 100 fully coupled anharmonic vibrational degrees of freedom and also includes multidimensional tunneling effects. After describing the pseudocode and demonstrating its computational efficiency, we apply the new code for estimating the rate constant of the proton transfer isomerization reaction of the 2,4,6-tri- tert-butylphenyl to 3,5-di- tert-butylneophyl. Comparison with both theoretical and experimental results is presented. Parsctst code is user-friendly and provides a significant computational time saving compared to serial calculations. We believe that parsctst can boost the application of SCTST as an alternative to the basic transition state theory for accurate kinetics modeling not only in combustion or atmospheric chemistry, but also in organic synthesis, where bigger reactive systems are encountered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.