Abstract

Automated extraction of spectral endmembers is a crucial task in hyperspectral data analysis. In most cases, the computational complexity of endmember extraction algorithms is very high, in particular, for very high-dimensional datasets. However, the intrinsic properties of available techniques are amenable to the design of parallel implementations. In this letter, we evaluate several parallel algorithms that represent three representative approaches to the problem of extracting endmembers. Two parallel algorithms have been selected to represent a first class of algorithms based on convex geometry concepts. In particular, we develop parallel implementations of approximate versions of the N-FINDR and pixel purity index algorithms, along with a parallel hybrid of both techniques. A second class is given by algorithms based on constrained error minimization and represented by a parallel version of the iterative error analysis algorithm. Finally, a parallel version of the automated morphological endmember extraction algorithm is also presented and discussed. This algorithm integrates the spatial and spectral information as opposed to the other discussed algorithms, a feature that introduces additional considerations for its parallelization. The proposed algorithms are quantitatively compared and assessed in terms of both endmember extraction accuracy and parallel efficiency, using standard AVIRIS hyperspectral datasets. Performance data are measured on Thunderhead, a parallel supercomputer at NASA's Goddard Space Flight Center

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.