Abstract

Nearly bandlimited signals play an important role in the biomedical signal processing community. The common method to analyze these signals is via the empirical mode decomposition approach which decomposes the non-stationary signals into the sums of the intrinsic mode functions. However, this method is computational demanding. A natural idea to reduce the computational cost is via the block processing. However, the severe boundary effect would happen due to the discontinuities between two consecutive blocks. In order to solve this problem, this paper proposes to realize the parallel implementation via polyphase representation. That is, the empirical mode decomposition is implemented on each polyphase component of the original signal. Then each sub-signals are combined after upsampling. The simulation results show that our proposed method achieves the approximate intrinsic mode functions both qualitatively and quantitatively very close to the true intrinsic mode functions. Besides, compared with the conventional block processing method which significantly suffered from the boundary effect problem, our proposed method does not have this issue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.