Abstract

Linear systems in chemical physics often involve matrices with a certain sparse block structure. These can often be solved very effectively using iterative methods (sequence of matrix–vector products) in conjunction with a block Jacobi preconditioner [Numer. Linear Algebra Appl. 7 (2000) 715]. In a two-part series, we present an efficient parallel implementation, incorporating several additional refinements. The present study (paper I) emphasizes construction of the block Jacobi preconditioner matrices. This is achieved in a preprocessing step, performed prior to the subsequent iterative linear solve step, considered in a companion paper (paper II). Results indicate that the block Jacobi routines scale remarkably well on parallel computing platforms, and should remain effective over tens of thousands of nodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.