Abstract
This work presents an efficient mapping scheme for the multilayer perceptron (MLP) network trained using back-propagation (BP) algorithm on network of workstations (NOWs). Hybrid partitioning (HP) scheme is used to partition the network and each partition is mapped on to processors in NOWs. We derive the processing time and memory space required to implement the parallel BP algorithm in NOWs. The performance parameters like speed-up and space reduction factor are evaluated for the HP scheme and it is compared with earlier work involving vertical partitioning (VP) scheme for mapping the MLP on NOWs. The performance of the HP scheme is evaluated by solving optical character recognition (OCR) problem in a network of ALPHA machines. The analytical and experimental performance shows that the proposed parallel algorithm has better speed-up, less communication time, and better space reduction factor than the earlier algorithm. This work also presents a simple and efficient static mapping scheme on heterogeneous system. Using divisible load scheduling theory, a closed-form expression for number of neurons assigned to each processor in the NOW is obtained. Analytical and experimental results for static mapping problem on NOWs are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.