Abstract
We present a parallel implementation framework for a new dynamic/thermodynamic sea-ice model, called neXtSIM, based on the Elasto–Brittle rheology and using an adaptive mesh. The spatial discretisation of the model is done using the finite-element method. The temporal discretisation is semi-implicit and the advection is achieved using either a pure Lagrangian scheme or an Arbitrary Lagrangian Eulerian scheme (ALE). The parallel implementation presented here focuses on the distributed-memory approach using the message-passing library MPI. The efficiency and the scalability of the parallel algorithms are illustrated by the numerical experiments performed using up to 500 processor cores of a cluster computing system. The performance obtained by the proposed parallel implementation of the neXtSIM code is shown being sufficient to perform simulations for state-of-the-art sea ice forecasting and geophysical process studies over geographical domain of several millions squared kilometers like the Arctic region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.