Abstract

To develop a robust parallel imaging reconstruction method using spatial nulling maps (SNMs). Parallel reconstruction using null operations (PRUNO) is a k-space reconstruction method where a k-space nulling system is derived using null-subspace bases of the calibration matrix. ESPIRiT reconstruction extends the PRUNO subspace concept by exploiting the linear relationship between signal-subspace bases and spatial coil sensitivity characteristics, yielding a hybrid-domain approach. Yet it requires empirical eigenvalue thresholding to mask the coil sensitivity information and is sensitive to signal- and null-subspace division. In this study, we combine the concepts of null-subspace PRUNO and hybrid-domain ESPIRiT to provide a more robust reconstruction method that extracts null-subspace bases of calibration matrix to calculate image-domain SNMs. Multi-channel images are reconstructed by solving an image-domain nulling system formed by SNMs that contain both coil sensitivity and finite image support information, therefore, circumventing the masking-related procedure. The proposed method was evaluated with multi-channel 2D brain and knee data and compared to ESPIRiT. The proposed hybrid-domain method produced quality reconstruction highly comparable to ESPIRiT with optimal manual masking. It involved no masking-related manual procedure and was tolerant of the actual division of null- and signal-subspace. Spatial regularization could be also readily incorporated to reduce noise amplification as in ESPIRiT. We provide an efficient hybrid-domain reconstruction method using multi-channel SNMs that are calculated from coil calibration data. It eliminates the need for coil sensitivity masking and is relatively insensitive to subspace separation, therefore, presenting a robust parallel imaging reconstruction procedure in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.