Abstract

Hyperpolarized (HP) gas imaging of the lungs is an ideal potential application for parallel imaging. This is due to the fact that there is limited scan time (breath hold of 20 s) and limited non-renewable polarization. Reduced phase encode parallel imaging is demanding on hardware in that it requires multiple receivers. In this work, simultaneous parallel acquisition of hyperpolarized (HP) 3He images from multiple slices was demonstrated in phantoms and in vivo using a simultaneous slice excitation method, at a field strength of 1.5 T. The pulse sequence allows simultaneous acquisition of n slices per RF excitation, thus reducing the number of RF pulses needed to fully cover a given volume with multi-slicing. Unlike conventional parallel imaging, this method does not require prior reference scan information, which would consume some of the finite longitudinal polarization in lung ventilation studies with HP gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call