Abstract

Hyper heuristics is a relatively new optimisation algorithm. Numerous studies have reported that hyper heuristics are well applied in combinatorial optimisation problems. As a classic combinatorial optimisation problem, the row layout problem has not been publicly reported on applying hyper heuristics to its various sub-problems. To fill this gap, this study proposes a parallel hyper-heuristic approach based on reinforcement learning for corridor allocation problems and parallel row ordering problems. For the proposed algorithm, an outer layer parallel computing framework was constructed based on the encoding of the problem. The simulated annealing, tabu search, and variable neighbourhood algorithms were used in the algorithm as low-level heuristic operations, and Q-learning in reinforcement learning was used as a high-level strategy. A state space containing sequences and fitness values was designed. The algorithm performance was then evaluated for benchmark instances of the corridor allocation problem (37 groups) and parallel row ordering problem (80 groups). The results showed that, in most cases, the proposed algorithm provided a better solution than the best-known solutions in the literature. Finally, the meta-heuristic algorithm applied to three low-level heuristic operations is taken as three independent algorithms and compared with the proposed hyper-heuristic algorithm on four groups of parallel row ordering problem instances. The effectiveness of Q-learning in selection is illustrated by analysing the comparison results of the four algorithms and the number of calls of the three low-level heuristic operations in the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.