Abstract
Human immunodeficiency virus (HIV)-1 exhibits remarkable genetic diversity. For this reason, an effective HIV-1 vaccine must elicit antibodies that can neutralize many variants of the virus. While broadly neutralizing antibodies (bnAbs) have been isolated from HIV-1 infected individuals, a general understanding of the virus-antibody coevolutionary processes that lead to their development remains incomplete. We performed a quantitative study of HIV-1 evolution in two individuals who developed bnAbs. We observed strong selection early in infection for mutations affecting HIV-1 envelope glycosylation and escape from autologous strain-specific antibodies, followed by weaker selection for bnAb resistance later in infection. To confirm our findings, we analyzed data from rhesus macaques infected with viruses derived from the same two individuals. We inferred remarkably similar fitness effects of HIV-1 mutations in humans and macaques. Moreover, we observed a striking pattern of rapid HIV-1 evolution, consistent in both humans and macaques, that precedes the development of bnAbs. Our work highlights strong parallels between infection in rhesus macaques and humans, and it reveals a quantitative evolutionary signature of bnAb development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.