Abstract

A parallel Hash algorithm construction based on chaotic maps with changeable parameters is proposed and analyzed in this paper. The two main characteristics of the proposed algorithm are parallel processing mode and message expansion. The algorithm translates the expanded message blocks into the corresponding ASCII code values as the iteration times, iterates the chaotic asymmetric tent map and then the chaotic piecewise linear map, continuously, with changeable parameters dynamically obtained from the position index of the corresponding message blocks, to generate decimal fractions, then rounds the decimal fractions to integers, and finally cascades these integers to construct intermediate Hash value. Final Hash value with the length of 128-bit is generated by logical XOR operation of intermediate Hash values. Theoretical analysis and computer simulation indicate that the proposed algorithm satisfies the performance requirements of a secure Hash function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.