Abstract
We focus on Partial Differential Equation (PDE) based Data Assimilatio problems (DA) solved by means of variational approaches and Kalman filter algorithm. Recently, we presented a Domain Decomposition framework (we call it DD-DA, for short) performing a decomposition of the whole physical domain along space and time directions, and joining the idea of Schwarz' methods and parallel in time approaches. For effective parallelization of DD-DA algorithms, the computational load assigned to subdomains must be equally distributed. Usually computational cost is proportional to the amount of data entities assigned to partitions. Good quality partitioning also requires the volume of communication during calculation to be kept at its minimum. In order to deal with DD-DA problems where the observations are nonuniformly distributed and general sparse, in the present work we employ a parallel load balancing algorithm based on adaptive and dynamic defining of boundaries of DD -- which is aimed to balance workload according to data location. We call it DyDD. As the numerical model underlying DA problems arising from the so-called discretize-then-optimize approach is the constrained least square model (CLS), we will use CLS as a reference state estimation problem and we validate DyDD on different scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.