Abstract
We theoretically investigate turbulence in high-confinement mode (H-mode) plasmas with the pressure gradient and the mean flow. The toroidal flow, which is induced by the poloidal mean flow so as to satisfy the divergence free condition, exists in the H-mode, thus the effect of the toroidal return flow on instabilities is considered. The proposed model self-consistently includes not only the destabilization of the drift wave and the parallel flow shear instability, called the D’Angelo mode, but also the stabilization due to the poloidal flow shear. Depending on the strength of the flow shear or on the magnetic geometrical parameter, we obtain the stabilization of the drift wave and the destabilization of the D’Angelo mode. The competition between different instabilities through coupling of the poloidal flow with the toroidal return flow could be a key concept for understanding the turbulence in the H-mode. The characteristics of the instabilities are similar to the observations of the precursor of the type-III edge-localized mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.