Abstract

In this paper, we study the parallel simulation of the magnetohydrodynamic (MHD) dynamo in a rapidly rotating spherical shell with pseudo-vacuum magnetic boundary conditions. A second-order finite volume scheme based on a collocated quasi-uniform cubed-sphere grid is applied to the spatial discretization of the MHD dynamo equations. To ensure the solenoidal condition of the magnetic field, we adopt a widely-used approach whereby a pseudo-pressure is introduced into the induction equation. The temporal integration is split by a second-order approximate factorization approach, resulting in two linear algebraic systems both solved by a preconditioned Krylov subspace iterative method. A multi-level restricted additive Schwarz preconditioner based on domain decomposition and multigrid method is then designed to improve the efficiency and scalability. Accurate numerical solutions of two benchmark cases are obtained with our code, comparable to the existing local method results. Several large-scale tests performed on the Sunway TaihuLight supercomputer show good strong and weak scalabilities and a noticeable improvement from the multi-level preconditioner with up to 10368 processor cores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call