Abstract

In this paper, a finite-volume discrete Boltzmann method based on a cell-centered scheme for inviscid compressible flows on unstructured grids is presented. In the new method, the equilibrium distribution functions are obtained from the circle function in two-dimensions (2D) and the spherical function in three-dimensions (3D). Moreover, the advective fluxes are evaluated by Roe's flux-difference splitting scheme, the gradients of the density and total energy distribution functions are computed with a least-squares method, and the Venkatakrishnan limiter is employed to prevent oscillations. To parallelize the method we use a graph-based partitioning approach that also guarantees the load balancing. The method is validated by seven benchmark problems: (a) a 2D flow pasting a bump, (b) a 2D Riemann problem, (c) a 2D flow passing the RAE2822 airfoil, (d) flows passing the NACA0012 airfoil, (e) 2D supersonic flows around a cylinder, (f) an explosion in a 3D box, and (g) a 3D flow around the ONERA M6 wing. The benchmark tests show that the results obtained by the proposed method match well with the published results, and the parallel numerical experiments show that the proposed parallel implementation has close to linear strong scalability, and parallel efficiencies of 95.31% and 94.56% are achieved for 2D and 3D problems on a supercomputer with up to 4800 processor cores, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call