Abstract

In this paper a modified parallel Jacobi-conditioned conjugate gradient (CG) method is proposed for solving linear elastic finite element system of equations. The conventional element-by-element and diagonally conditioned approaches are discussed with respect to parallel implementation on distributed memory MIMD architectures. The effects of communication overheads on the efficiency of the parallel CG solver are considered and it is shown that for the efficient performance of a parallel CG solver, the interprocessor communication has to be carried out concurrently. A concurrent communication scheme is proposed by relating the semi-bandwidth of the stiffness matrix with the number of independent degrees of freedom and the number of processors and inducing directionalization of communication within the processor pipeline. With the aid of two examples the effectiveness of the proposed method is demonstrated showing that the cost of communication remains low and relatively insensitive to the increase in the number of processors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.