Abstract

We describe an implementation to solve Poissonʼs equation for an isolated system on a unigrid mesh using FFTs. The method solves the equation globally on mesh blocks distributed across multiple processes on a distributed-memory parallel computer. Test results to demonstrate the convergence and scaling properties of the implementation are presented. The solver is offered to interested users as the library PSPFFT. Program summaryProgram title: PSPFFTCatalogue identifier: AEJK_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJK_v1_0.htmlProgram obtainable from: CPC Program Library, Queenʼs University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 110 243No. of bytes in distributed program, including test data, etc.: 16 332 181Distribution format: tar.gzProgramming language: Fortran 95Computer: Any architecture with a Fortran 95 compiler, distributed memory clustersOperating system: Linux, UnixHas the code been vectorized or parallelized?: Yes, using MPI. An arbitrary number of processors may be used (subject to some constraints). The program has been tested on from 1 up to ∼ 13 000 processors. RAM: Depends on the problem size, approximately 170 MBytes for 483 cells per process.Classification: 4.3, 6.5External routines: MPI (http://www.mcs.anl.gov/mpi/), FFTW (http://www.fftw.org), Silo (https://wci.llnl.gov/codes/silo/) (only necessary for running test problem).Nature of problem: Solving Poissonʼs equation globally on unigrid mesh distributed across multiple processes on distributed memory system.Solution method: Numerical solution using multidimensional discrete Fourier Transform in a parallel Fortran 95 code.Unusual features: This code can be compiled as a library to be readily linked and used as a blackbox Poisson solver with other codes.Running time: Depends on the size of the problem, but typically less than 1 second per solve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call