Abstract

We present a parallel depth resolved laser fabrication technique for micro- and nano-machining metal substrates based on temporal focusing. In this system, the spectrum of a femtosecond laser pulse is first spatially separated by a digital micromirror device, which simultaneously serves as a diffraction grating and a programmable binary mask. After collimation and beam flattening, an objective lens recombines the spectrum to the focal region, forming a high-intensity, depth resolved light sheet for laser micromachining. The light sheet technology enables parallel fabrication of highly uniform micro-structures of close to diffraction-limited resolution. Experimental results demonstrate high-resolution (~800nm) direct area patterning on various metal substrates, e.g., nickel and copper, over an area of ~100×60µm2 within tens of laser pulses. The relationship among material removal rate, surface flatness, laser power, and number of pulses have been experimentally studied; the results suggest the application of higher power with fewer number of laser pulses produce microstructures of better surface quality. The light sheet technology substantially improves the throughput of ultrafast laser machining, enabling direct area patterning without compromising the resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.