Abstract
PurposeThis paper aims to develop a parallel fast neighbor search method and communication strategy for particle-based methods with adaptive smoothing-length on distributed-memory computing systems.Design/methodology/approachWith a multi-resolution-based hierarchical data structure, the parallel neighbor search method is developed to detect and construct ghost buffer particles, i.e. neighboring particles on remote processor nodes. To migrate ghost buffer particles among processor nodes, an undirected graph is established to characterize the sparse data communication relation and is dynamically recomposed. By the introduction of an edge coloring algorithm from graph theory, the complex sparse data exchange can be accomplished within optimized frequency. For each communication substep, only efficient nonblocking point-to-point communication is involved.FindingsTwo demonstration scenarios are considered: fluid dynamics based on smoothed-particle hydrodynamics with adaptive smoothing-length and a recently proposed physics-motivated partitioning method [Fu et al., JCP 341 (2017): 447-473]. Several new concepts are introduced to recast the partitioning method into a parallel version. A set of numerical experiments is conducted to demonstrate the performance and potential of the proposed parallel algorithms.Originality/valueThe proposed methods are simple to implement in large-scale parallel environment and can handle particle simulations with arbitrarily varying smoothing-lengths. The implemented smoothed-particle hydrodynamics solver has good parallel performance, suggesting the potential for other scientific applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.