Abstract

Dissolved organic matter (DOM) is regarded as the environmentally friendly substance. Strong complexes could be formed between DOM and heavy metals. Thus, the distribution, bioavailability, toxicity, and fate of heavy metals could be controlled in the environment. The widely spread method for characterizing metal-organic interactions is restricted to combine parallel faction analysis (PARAFAC) with the complexation model. However, a DOM PARAFAC component always contains two or more peaks. Therefore, the traditional method cannot reveal the inner changes of PARAFAC components or whether all the DOM peaks in one PARAFAC component are bound with metal during the metal-organic binding process. In this work, two-dimensional correlation spectroscopy (2DCOS) combined with PARAFAC and the complexation model were employed to reveal the binding speed and ability of different fluorescent peaks from DOM PARAFAC components during the binding process of mercury (Hg2+) to DOM. The results in this study showed that during the Hg2+-DOM binding process, fluorescent peaks in tryptophan-like component all presented Hg2+-binding ability. However, only humic-like component ligands showed Hg2+-binding ability. With these promising results, the true Hg2+ binding rate and ability of different DOM ligands can be revealed, which is helpful for addressing environmental pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.