Abstract

Hot electron (E-EFermi=0.75 to 1.55 eV) lifetimes for cesiated Cu(100) and Cu(111) surfaces are measured via interferometric time-resolved two-photon photoemission with a 19-fs intensity FWHM mode locked Ti:sapphire laser at 1.55 eV. The data are analyzed using the optical Bloch equations and a laser pulse characterized in situ via surface second-harmonic generation interferometric autocorrelation. It is found that the retrieved hot-electron lifetimes are unphysically fast, and have a strong dependence on the temperature of the sample and the polarization of the laser. A simple explanation for the data is that the measured signal consists of contributions from transitions through both virtual and real intermediate states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call