Abstract

BackgroundStorage roots are an ecologically and agriculturally important plant trait that have evolved numerous times in angiosperms. Storage roots primarily function to store carbohydrates underground as reserves for perennial species. In morning glories, storage roots are well characterized in the crop species sweetpotato, where starch accumulates in storage roots. This starch-storage tissue proliferates, and roots thicken to accommodate the additional tissue. In morning glories, storage roots have evolved numerous times. The primary goal of this study is to understand whether this was through parallel evolution, where species use a common genetic mechanism to achieve storage root formation, or through convergent evolution, where storage roots in distantly related species are formed using a different set of genes. Pairs of species where one forms storage roots and the other does not were sampled from two tribes in the morning glory family, the Ipomoeeae and Merremieae. Root anatomy in storage roots and fine roots was examined. Furthermore, we sequenced total mRNA from storage roots and fine roots in these species and analyzed differential gene expression.ResultsAnatomical results reveal that storage roots of species in the Ipomoeeae tribe, such as sweetpotato, accumulate starch similar to species in the Merremieae tribe but differ in vascular tissue organization. In both storage root forming species, more genes were found to be upregulated in storage roots compared to fine roots. Further, we find that fifty-seven orthologous genes were differentially expressed between storage roots and fine roots in both storage root forming species. These genes are primarily involved in starch biosynthesis, regulation of starch biosynthesis, and transcription factor activity.ConclusionsTaken together, these results demonstrate that storage roots of species from both morning glory tribes are anatomically different but utilize a common core set of genes in storage root formation. This is consistent with a pattern of parallel evolution, thus highlighting the importance of examining anatomy together with gene expression to understand the evolutionary origins of ecologically and economically important plant traits.

Highlights

  • Storage roots are an ecologically and agriculturally important plant trait that have evolved numerous times in angiosperms

  • In the context of this study, we found that orthologs of two genes involved in starch biosynthesis had significantly higher expression in storage roots compared to fine roots in both sweetpotato and Distimake dissectus (Fig. 3)

  • Given the large number of orthologous genes differentially expressed (DE) between storage roots and fine roots, we hypothesize that there was a single origin of storage roots before the divergence of the morning glory tribes Ipomoeeae and Merremieae given that storage roots in the species examined are superficially anatomically different but store starch in a similar manner

Read more

Summary

Introduction

Storage roots are an ecologically and agriculturally important plant trait that have evolved numerous times in angiosperms. Storage roots are well characterized in the crop species sweetpotato, where starch accumulates in storage roots. This starch-storage tissue proliferates, and roots thicken to accommodate the additional tissue. The primary goal of this study is to understand whether this was through parallel evolution, where species use a common genetic mechanism to achieve storage root formation, or through convergent evolution, where storage roots in distantly related species are formed using a different set of genes. Parallel and convergent evolution of complex morphological traits has long been of interest to evolutionary biologists, who have noted that functionally and morphologically similar phenotypes have evolved independently in unrelated lineages. Studies characterizing the genetic basis of independent phenotypic evolution have concluded that many traits evolve convergently, appearing. Comparative studies may reveal genes involved in storage root formation across distantly related species

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call