Abstract

In this paper, we present a parallel numerical algorithm for solving the phase field crystal equation. In the algorithm, a semi-implicit finite difference scheme is derived based on the discrete variational derivative method. Theoretical analysis is provided to show that the scheme is unconditionally energy stable and can achieve second-order accuracy in both space and time. An adaptive time step strategy is adopted such that the time step size can be flexibly controlled based on the dynamical evolution of the problem. At each time step, a nonlinear algebraic system is constructed from the discretization of the phase field crystal equation and solved by a domain decomposition based, parallel Newton–Krylov–Schwarz method with improved boundary conditions for subdomain problems. Numerical experiments with several two and three dimensional test cases show that the proposed algorithm is second-order accurate in both space and time, energy stable with large time steps, and highly scalable to over ten thousands processor cores on the Sunway TaihuLight supercomputer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.