Abstract
We discuss the possibility of using multiple shift–invert Lanczos and contour integral based spectral projection method to compute a relatively large number of eigenvalues of a large sparse and symmetric matrix on distributed memory parallel computers. The key to achieving high parallel efficiency in this type of computation is to divide the spectrum into several intervals in a way that leads to optimal use of computational resources. We discuss strategies for dividing the spectrum. Our strategies make use of an eigenvalue distribution profile that can be estimated through inertial counts and cubic spline fitting. Parallel sparse direct methods are used in both approaches. We use a simple cost model that describes the cost of computing k eigenvalues within a single interval in terms of the asymptotic cost of sparse matrix factorization and triangular substitutions. Several computational experiments are performed to demonstrate the effect of different spectrum division strategies on the overall performance of both multiple shift–invert Lanczos and the contour integral based method. We also show the parallel scalability of both approaches in the strong and weak scaling sense. In addition, we compare the performance of multiple shift–invert Lanczos and the contour integral based spectral projection method on a set of problems from density functional theory (DFT).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.